US NAVY

Naval Flight Officers (NFOs)

Community Overview. Naval Flight Officers (NFOs) are members of the select, highly skilled Naval Aviation team. NFOs may be radar intercept officers, tactical coordinators or airborne electronic warfare specialists. The Navy maintains and operates more than 4,000 aircraft including carrier-based jets, land-based patrol and reconnaissance aircraft, transport planes and sea and land-based helicopters. The Navy offers the world's most advanced and extensive training for candidates who qualify as skilled aviation professionals in a high-quality organization. Civilians transition to aviation officers during 13 weeks of intensive academic and military training at Officer Candidate School (OCS), Naval Air Station (NAS) Pensacola, Fla. NAS Pensacola is famed as the birthplace of Naval Aviation. Established in 1914, it is often called the "Annapolis of the Air." Aviation training is conducted at the Naval Aviation Schools Command (NASC) at Pensacola. OCS is challenging, requiring hard work and long days to build confidence and pride. Upon successful completion of preliminary training at OCS, future Navy pilots, NFOs and AMDOs are commissioned as Ensigns. All Ensigns entering aviation programs will then complete a six-week air indoctrination course at NASC, Pensacola.

Specific job elements for first tour. Naval Aviation is renowned for the demands it places upon its flyers. The skills and concentration required to land a high-performance jet onboard an aircraft carrier deck pitching in the black of night, or to track a submarine while flying at only a few hundred feet above stormy seas, are not just linked to a solid academic background and top physical conditioning. There is more to it than that; it requires a combination of talents and dedication that many people possess, but few are challenged to use to full measure.

Active duty obligation. Candidates will serve a minimum of six years on active duty from the date of designation as a Naval Flight Officer. Candidates who do not complete the Naval Flight Officer program will serve four years from the date they are disenrolled from flight status unless released by the Deputy Chief of Naval Operations (Manpower, personnel and training).

Training Pipeline following commission. Naval Flight Officer. As a student Naval Flight Officer, you'll get specialty training on the most advanced tactical systems and complex communications systems found in all Navy aircraft. You'll study aerodynamics, aircraft engine systems, meteorology, navigation, flight planning and aircraft safety. Next, you'll train in a specialized area of naval aviation for a specific aircraft.

Strike. Carrier-based EA-6B Prowler electronic attack aircraft and S-3B Viking sea control aircraft

Strike Fighter. Carrier-based F/A 18D/F Hornet strike-fighter, and F-14 Tomcat strike-fighter.

Advanced Radar Navigation and Airborne Early Warning system. Carrier-based E-2 Hawkeye early warning and control aircraft.

Advanced Navigation. EP-3E and P-3 Orion patrol and reconnaissance aircraft or E6 strategic communications aircraft.

In any of these aircraft, you are the key to successful mission accomplishment. You'll immediately analyze all the information collected and direct the action against enemy submarines, surface ships or aircraft. You'll receive your "Wings of Gold" when you complete your specialized training, earning your designation as Naval Flight Officer. You'll report to a Fleet Replacement Squadron (FRS) for training in your specific aircraft and then report to your first operational squadron. In your squadron, you'll join new and experienced Naval Flight Officers and pilots. You'll work together to hone your skills, becoming part of the highly trained, professional team that is our nation's first line of defense.
Locations of initial fleet assignments. Initial experience assignments are normally to aircraft including carrier-based jets and multi-engine turbo-props, land-based patrol and reconnaissance aircraft, as well as strategic and transport planes.

Special pay/bonuses. Naval aviation officers receive aviation career incentive pay in addition to their regular salary. Student aviation officers receive $125 per month flight pay during flight training. The monthly amount of flight pay received depends on time in service and increases by hundreds of dollars within a few years to the current maximum of $840.00 per month. In addition, you may be eligible for retention bonuses at the end of your initial commitment, currently worth up to $195,000 over a 25-year career.

Basic eligibility requirements. Applicants must be citizens of the United States. Applicants must be at least 19 years old and not have passed their 27th birthday on commissioning. Maximum age limit may be adjusted upward to their 31st birthday on a month for month basis for active duty and prior military service applicants. Applicants must have a Bachelor of Arts or Bachelor of Science degree from an accredited College or University. Must have a cumulative grade point average of at least 2.5 on a 4.0 scale. Major: No restrictions, but degrees in technical disciplines preferred. Mental: AQR 3/PFAR 4/ PBI 3. The Commander, Navy Recruiting Command (CNRC) will endeavor to select candidates with the highest mental qualifications, accepting minimum scores only when market conditions or exceptional cases warrant. Physical: Must be physically qualified and Aeronautically adapted in accordance with the physical standards established by the Chief, Bureau of Medicine and Surgery (CHBUMED). Active duty military members accepted as candidates must obtain an aviation physical exam from a qualified Flight Surgeon to determine aeronautical adaptability.
NAVAL REACTORS ENGINEER (OFFICER)

Snapshot
-One of the most competitive Officer programs in the Navy
-Extremely small community – several hundred
-Concentrate on the theoretical aspects of nuclear propulsion
-Keys to success:
 - High GPA (3.5+)
 - Technical Degree – Math, Physics, Engineering, etc.
-Service obligation - 5 years active duty + 3 years reserve

Program Overview
Naval Reactors (NR) is located at the Navy Yard in Washington, DC, and is a joint Department of Energy and Department of the Navy activity. NR has a "cradle to grave" responsibility for all shipboard nuclear power plants, shore-based prototypes, and nuclear propulsion support facilities for the U.S. Navy. Admiral Hyman G. Rickover founded NR in 1948. NR’s significant achievements include the development of the propulsion plant in the first nuclear powered submarine, USS NAUTILUS; the first commercial nuclear power station, Shipping Port Atomic Power Station; and the propulsion plants for over 100 nuclear powered ships, including six classes of submarines, two classes of cruisers, and two classes of carriers. NR Headquarters consists of about 250 engineers, who technically manage the Naval Nuclear Propulsion Program under the direction of the current director, Admiral John M. Richardson. About 100 of these engineers are junior naval officers with engineering or technical degrees. This Headquarters group is responsible for all aspects of the Nuclear Propulsion Program including:
 · Advanced research and development in concepts, materials, design, and operation of nuclear propulsion plants
 · Training and qualification of nuclear propulsion plant operators
 · Reactor safety and radiological controls
 · Development of equipment, procedures, and specifications for naval nuclear propulsion plants
 · Overseeing the acquisition, construction, testing, and operation of propulsion plants
 · Developing and implementing the operating, maintenance, and refueling procedures for these plants
 · Resolving emergent fleet technical issues
 · Decommissioning the nuclear propulsion plants when removed from service
Training and Education
Upon graduation from college, the formal training process of becoming an Officer in the Naval Nuclear Propulsion program is officially underway. For those pursuing a Naval Reactors Engineer position, the first step is Officer Development School (ODS) – a five-week course in Newport, Rhode Island, that provides a comprehensive and intense introduction to the responsibilities of being a Navy Staff Corps Officer. Upon completion of ODS, newly commissioned Officers move on to receive the advanced training that is at the core of Navy Nuclear Propulsion. Naval Reactors Engineers can expect to spend the next five years overseeing all the shipboard nuclear power plants, shore-based prototypes and nuclear propulsion support facilities in the Navy. The advanced training process they undergo prepares them to join some of the best and brightest technical experts in the country.

Naval Reactors Headquarters (NR) – Preliminary Training
Officers have an initial assignment of approximately four to five months receiving preliminary training at the Naval Reactors Headquarters in Washington, D.C. This is followed by approximately two weeks spent gaining a working background at one of the Navy’s land-based prototypes in either Charleston, South Carolina, or Albany, New York.

Naval Reactors Training Program (NRTP)
The next step involves the six-month process of earning a postgraduate-level education in nuclear engineering through the Bettis Reactor Engineering School at the Bettis Atomic Power Laboratory in Pittsburgh, Pennsylvania.

Naval Reactors Headquarters (NR) – Staff Assignment
Following Naval Reactors Training, Naval Reactors Engineers are then assigned a Nuclear Engineer position with the group responsible for managing all technical aspects of the Naval Nuclear Propulsion program – planning, approving and confirming the design, operation and maintenance of nearly 100 nuclear reactors. Engineers start in a junior role under a supervisor and rapidly advance to take on increasingly more responsibilities.

Research and Project Assignments
A typical engineer at NR will be responsible for several projects, components, or designs. In this respect, the engineer has the responsibility for technical matters, which can entail review and approval of designs, allocating funds and technically directing contractor effort, ascertaining test requirements, reviewing and approving test results, responding to fleet problems by coordinating technical investigations and approving corrective actions, and
determining the scope of work and timetables to support future projects. To perform this work, NR has facilities with state of the art capabilities in terms of computer aided design, material testing, and component testing. Engineers occasionally ride onboard nuclear powered ships to oversee initial sea trials, observe propulsion plant performance, and evaluate crew performance. Further, engineers visit shipyards, laboratories, and vendors to evaluate nuclear propulsion work. The emphasis at all times is on technical involvement and control of the work to ensure that shore-based training reactors and shipboard reactors meet fleet requirements and are operated safely.

Working Environment
The working environment at Naval Reactors is challenging and rewarding. All engineers selected for NR assignment are in the top 10 percent of their collegiate class. As such, you will be working among the best and brightest technical experts in the country. The skills you learn at Naval Reactors will be of value for the rest of your career, whether you choose to remain in the military or enter the private sector following your initial obligation. You will obtain post graduate level education in nuclear engineering, learn to manage technical projects, improve your communication and presentation skills, hone your problem solving abilities and interact with senior managers from government and supporting contractors.

Eligibility Overview
Citizenship: Applicants must be citizens of the United States.
Sex: Open to men and women.
Age: At least 19 and less than 29 years of age at time of commissioning. Waivers may be considered on a case basis for those who would not exceed 35 at commissioning.
Education: Completed or working on a baccalaureate degree and within one year of graduation, with a minimum of one year of calculus and one year of calculus-based physics. Calculus must be through differential and integral calculus of one real variable. Physics must cover the classic fundamentals of mechanics, magnetism, and electricity. Applicants who have completed a baccalaureate degree and are enrolled in a master's degree program; must be within one year of completion of the master's degree.
Marital status: No restrictions.
Physical: In accordance with restricted line standards listed in the Manual of Medicine Department, Chapter 15.
Entitlements
- Finishing college: While on active duty, you will be paid as an E-6 (up to $4500 per month).
- Opportunity for advancement to E-7 for referral resulting in a new accession into the NUPOC or NPI/NR Engineer program (additional $250 per month)
- Commissioned as ENSIGN (O-1) prior to ODS
SNAPSHOT

- Teach the fundamentals of nuclear propulsion, encompassing everything from science to math, electrical engineering to reactor dynamics.
- Train the Navy’s Nuclear Propulsion Plant Operators
- 5 weeks in Newport, RI at Officer Development School (ODS).
- Approximately 4 months of training at Nuclear Power School prior to teaching
- Service obligation - 4 years active duty + 4 years reserve

PROGRAM OVERVIEW

Navy Nuclear Power Training Command (NNPTC) is located in Goose Creek, South Carolina (a suburb of Charleston). Nuclear Power School Instructors are responsible for teaching future nuclear trained officers and enlisted personnel the theory and fundamentals behind the design and operation of Naval nuclear propulsion plants. Nuclear Power School is a 24-week course in science and technology, designed to provide theoretical background knowledge of nuclear power. The school week is Monday through Friday, 7:30 a.m. (0730) until 4:05 p.m. (1605). There is one instructor, for each subject, on duty each academic night for any of the students requiring additional assistance on their homework or studies. Subjects taught include:

- Mathematics (39 hours) - Ordinary and partial differential equations, integral calculus and probability and distribution functions.
- Physics (71 hours) - Atomic and nuclear physics, special relativity, reactor physics and neutron diffusion theory.
- Chemistry (50 hours) - Basic chemistry, reaction kinetics, boiler chemistry, radiation induced reactions, gases, oxidation-reduction.
- Thermodynamics (87 hours) - Heat transfer, fluid dynamics, steam thermodynamics, properties of water, Rankine cycle, conduction and convection.
- Electrical Engineering (basic and advanced - 138 hours) - Circuit analysis, inductance and capacitance, solid state amplifiers, AC and DC motors and generators, digital and analog integrated circuits, reactor plant instrumentation, safety circuits and reactor control equipment design.
- Materials (28 hours) - Strength of materials and complete development of the Nil Ductility Phenomenon. Fuel and clad alloy composition, pressure vessel design, development of neutron embrittlement and other material radiation effects as well as corrosion
NAVAL NUCLEAR POWER SCHOOL
INSTRUCTOR (OFFICER)

and structure of materials.

- **Reactor Dynamics and Core Characteristics** (86 hours) - Complete core design satisfying all requirements for power, temperature, control and radiation levels. Essentially, it is a course in nuclear engineering.
- **Reactor Plant Systems** (13 hours) - Design of steam system and reactor plant parameters.
- **Shielding and Radiological Fundamentals** (46 hours) - Study of materials, attenuation factors and geometry in shielding calculations.
- **Aspects of Reactor Plant Operations** (115 hours) - Study of reactor plant operations integrating knowledge from all of the above courses.

Impact on the future
Nuclear Power School instructors are responsible for training future naval officers and enlisted personnel, while gaining valuable teaching experience in an exciting and technologically advanced curriculum.

Education Opportunities for NNPTC Staff
Several local schools offer members and their dependents the opportunity to further their education while in Charleston. Just about any degree program is available with evening and weekend classes offered. In addition, several out of area schools also provide educational opportunities through online classes, video/VTC classes, and fully accredited degrees awarded based on courses taken at local schools.

Eligibility Overview
- **Citizenship**: Applicants must be citizens of the United States.
- **Sex**: Open to men and women.
- **Age**: At least 19 and less than 29 years of age at time of commissioning. Waivers may be considered on a case basis for those who would not exceed 35 at commissioning.
- **Education**: Completed or working on a baccalaureate degree and within two and a half years of graduation, with a minimum of one year of calculus and one year of calculus-based physics. Calculus must be through differential and integral calculus of one real variable. Physics must cover the classic fundamentals of mechanics, magnetism, and electricity. Applicants who have completed a baccalaureate degree and are enrolled in a master's degree program, must be within one year of completion of the master's degree.
Marital status: No restrictions.
Physical: In accordance with restricted line standards listed in the Manual of Medicine Department, Chapter 15.

Entitlements
- Finishing college: While on active duty, you will be paid as an E-6 (Up to $4500 per month).
- Opportunity for advancement to E-7 for referral resulting in a new accession into the NUPOC or NPI/NR Engineer program (additional $250 per month).
- Commissioned as ENSIGN (O-1) prior to ODS.
NUCLEAR OFFICER

Snapshot
- Operational; more applied, less theoretical
- Commission through OCS in Newport, RI
- Two possible career paths
 - **Submarine Officer** (SUB) - Operate and, ultimately, command these quintessentially stealth vessels.
 - **Surface Warfare Officer** (SWO) - Oversee propulsion systems and personnel aboard multibillion-dollar, megaton, nuclear-powered aircraft carriers – managing the operational intricacies of the most capable ships on earth.
- $15,000 Bonus upon acceptance into the program
- $2,000 Bonus upon completion of NNPT (Naval Nuclear Propulsion Training)
- Continuation pay, SWO Department Head Bonus, Sub Pay
- Service obligation - 5 years active duty + 3 years reserve

SWO (N) Career Path
- 1 DIVO (Division Officer) Tour on ship (Destroyer, Cruiser, etc.), 18 months
 - Operational experience, leadership, earn SWO pin
- Nuclear Power School (6 months)
- Navy Prototype School (6 months)
- Tour on Aircraft Carrier

SUB (N) Career Path
- Nuclear Power School (6 months)
- Navy Prototype School (6 months)
- SOBC (Submarine Officer Basic Course) (3 months)
- First sea tour, earn warfare insignia (dolphins)
- Shore tour

If applying as a college student: Potentially take advantage of the Nuclear Propulsion Officer Candidate (NUPOC) program, which offers a monthly salary and housing allowance plus military health care benefits for up to 30 months while finishing school (service does not begin until after education and Navy advanced training have been completed).

Eligibility Overview
U.S. citizenship: Required
NUCLEAR OFFICER

Education: Graduate or student of an accredited college or university in the United States or in a United States territory pursuing a BA, BS or MS (preferably majoring in mathematics, engineering, physics, chemistry or other technical areas); and have completed or be enrolled in a college curriculum that includes a minimum of one year each of calculus-based physics and mathematics through integral calculus

Gender: Male or female

Age: 19 to 29 (Waivers may be considered on a case basis for those who would not exceed 31 at commissioning)

Medical exam: Required

Physical fitness test: Required
Program Overview.

On Jan. 17, 1955, the first nuclear-powered submarine, USS Nautilus (SSN 571) was put to sea for the first time and signaled her historic message - "Underway on nuclear power." The world's first nuclear-powered surface warship, the guided missile cruiser USS Long Beach (CGN-9), was commissioned Sept. 9, 1961. Just two months later came the first nuclear-powered aircraft carrier, USS Enterprise (CVN-65). Forty-five years later there have been 210 nuclear-powered ships built and over 117,000,000 miles steamed on nuclear power. Pursue an exciting and demanding career as a commissioned officer aboard a nuclear powered surface ship or submarine and become part of history. The Nuclear Propulsion Officer Candidate (NUPOC) Program offers intelligent, goal-driven individuals the opportunity to become part of the elite team of Nuclear Trained Naval Officers. Whether destined to become a member of the Nuclear Trained, Surface Warfare community or a Submarine Officer, all Nuclear Trained Officers receive top-notch training, which will prove to be both challenging and rewarding at the same time.

Not all Nuclear Power

While the majority of a Nuclear Trained Officer's time during the first tour of duty is spent learning and overseeing the operations of a nuclear propulsion plant, this is only a foundation on which much higher levels of responsibility are built. After mastering the engineering spaces and the theories behind nuclear power, junior officers learn more about communications, navigation, armament capabilities, and the tactical employment of the platform. Throughout their qualifications, always striving to gain sufficient knowledge and trust to be able to drive the ship, and ultimately earn the right to wear the warfare insignia of a Surface Warfare Officer or the coveted gold dolphins of a Submarine Officer.

Impact on the future.

Nuclear Trained Officers gain valuable life-long experiences, training, and sense of responsibility. Throughout their time onboard a ship, they are put in charge of a division and are responsible for ensuring that the people in the division, as well as the equipment, run smoothly and that all required tasks are completed on time to ensure that the ship is mission ready as scheduled. These responsibilities provide unique experiences for a young junior officer in leadership, managing people, and managing time. Both of these qualities will be beneficial in either a career in the Navy or in the civilian sector. In addition, the amount of responsibility levied on the shoulders of even the most junior officer on board well exceeds that of most peers entering the civilian sector. Just consider, as a twenty two-year-old, the Captain and the other officers onboard are asleep, and you make the announcement in the control room that you have assumed the watch, signifying that you are in charge of a $1.5 billion warship.

Eligibility Overview.

Citizenship: Applicants must be citizens of the United States.

Sex: Open to men and women. (Only men may be assigned to submarines)

Age: At least 19 and less than 29 years of age at the time of commissioning. Waivers may be considered on a case basis for those who would not exceed 31 at commissioning.

Education: Completed or working on a baccalaureate degree and within two and a half years of graduation, with a minimum of one year of calculus and one year of calculus-based physics. Calculus must be through differential and integral calculus of one real variable. Physics must cover the classic fundamentals of mechanics, magnetism, and electricity. Applicants who have completed a baccalaureate degree and are enrolled in a master's degree program, must be within one year of completion of the master's degree.

Marital status: No restrictions.

Physical: In accordance with restricted line standards listed in the Manual of Medicine Department, Chapter 15.

Training.

Upon graduation from college, all future nuclear officers attend Officer Candidate School in Newport, RI, where they receive a commission as an Ensign in the U.S. Navy. Following OCS, those officers designated for submarines report to Naval Nuclear Power School (NNPS) in Goose Creek, SC (a suburb of Charleston) to complete a 24-week, graduate level course of study in science and technology designed to provide theoretical knowledge of nuclear power. Subjects covered at NNPS include:

- Mathematics (39 hours) - Ordinary and partial differential equations, integral calculus and probability and distribution functions.
- Physics (71 hours) - Atomic and nuclear physics, special relativity, reactor physics and neutron diffusion theory.
· Chemistry (50 hours) - Basic chemistry, reaction kinetics, boiler chemistry, radiation induced reactions, gases, oxidation-reduction.
· Thermodynamics (87 hours) - Heat transfer, fluid dynamics, steam thermodynamics, properties of water, Rankine cycle, conduction and convection.
· Electrical Engineering (basic and advanced - 138 hours) - Circuit analysis, inductance and capacitance, solid state amplifiers, AC and DC motors and generators, digital and analog integrated circuits, reactor plant instrumentation, safety circuits and reactor control equipment design.
· Materials (28 hours) - Strength of materials and complete development of the Nil Ductility Phenomenon. Fuel and clad alloy composition, pressure vessel design, development of neutron embrittlement and other material radiation effects as well as corrosion and structure of materials.
· Reactor Dynamics and Core Characteristics (86 hours) - Complete core design satisfying all requirements for power, temperature, control and radiation levels. Essentially, it is a course in nuclear engineering.
· Reactor Plant Systems (13 hours) - Design of steam system and reactor plant parameters.
· Shielding and Radiological Fundamentals (46 hours) - Study of materials, attenuation factors and geometry in shielding calculations.
· Aspects of Reactor Plant Operations (115 hours) - Study of reactor plant operations integrating knowledge from all of the above courses.

After completion of NNPS, they report to one of the Navy's Nuclear Power Training Units (Prototype), in Balston Spa, NY (just north of Albany, NY) or Goose Creek, SC. Here they will receive hands-on training at an operational nuclear power plant, for an additional 24 weeks, where they will apply the concepts learned at NNPS to ultimately qualify as Engineering Officer of the Watch. Following prototype they go to Groton, CT for 13 weeks of Submarine Officer Basic Course (SOBC). Here they learn about the other systems onboard a submarine before reporting for their first assignment.

Those officers designated for surface duty report to Newport News, RI for 20 weeks of Surface Warfare Officers School (SWOS) immediately following OCS. After completing SWOS, they report to a conventional surface warship for 18 months, where they learn to drive the ship and earn their surface warfare qualification. After this 18-month tour, they then go through NNPS and Prototype with a follow-on tour onboard a nuclear powered aircraft carrier.

Obligation.
The obligation is 5 years as a commissioned officer upon satisfactory completion of OCS.

Entitlements.
· Signing bonus ($10,000 at time of enlistment and an additional $2,000 after completing Prototype)
· Finishing college: While on active duty, you will be paid as an E-6 (up to $4,500 per month).
· Opportunity for advancement to E-7 for referral resulting in a new accession into the NUPOC or NPI/NR Engineer program (additional $250 per month)
· Commissioned as ENSIGN after completing OCS.

Candidates entering the program may receive up to $105,000 while completing college.
NAVY PILOTS

Community Overview. Navy pilots are members of the select, highly skilled Naval Aviation team. The Navy maintains and operates more than 4,000 aircraft including carrier-based jets, land-based patrol and reconnaissance aircraft, transport planes and sea and land-based helicopters. The Navy offers the world's most advanced and extensive training for candidates who qualify as skilled aviation professionals in a high-quality organization. Civilians transition to aviation officers during 13 weeks of intensive academic and military training at Officer Candidate School (OCS), Naval Air Station (NAS) Pensacola, Fla. NAS Pensacola is famed as the birthplace of Naval Aviation. Established in 1914, it is often called the "Annapolis of the Air." Aviation training is conducted at the Naval Aviation Schools Command (NASC) at Pensacola. OCS is challenging, requiring hard work and long days to build confidence and pride. Upon successful completion of preliminary training at OCS, future Navy pilots, NFOs and AMDOs are commissioned as Ensigns. All Ensigns entering aviation programs will then complete a six-week air indoctrination course at NASC, Pensacola.

Active duty obligation. Candidates will serve a minimum of eight years on active duty from the date of designation as a Naval Aviator. Candidates who do not complete the Navy pilot program will serve four years from the date they are disenrolled from flight status unless released by the Deputy Chief of Naval Operations (Manpower, Personnel and Training).

Training Pipeline following commission. As a student pilot, you'll learn basic airmanship skills, instrument and formation flying, and basic acrobatic maneuvers. You'll also master the art of solo flight, earning the qualification to move on to more demanding training in a specific type of aircraft. Your intermediate and advanced pilot training will occur in one of five naval air communities. These five "pipelines" are jet (strike), turboprop (patrol and reconnaissance), multi-engine jet (strategic communications), carrier turboprop (airborne early warning) and helicopter (rotary). The pipeline you are in will determine the specialty flying skills you are taught, such as basic air combat tactics, gunnery, low-level flight and carrier landings. You'll also learn land and water survival techniques - key aspects of the Naval Aviation challenge. You'll earn your much-coveted Wings of Gold when you successfully complete your advanced training. With your Wings, you'll join the ranks of the most respected aviators in the world-Navy pilots. Before being assigned to your first operational squadron, you'll join a Fleet Replacement Squadron (FRS) for training in the specific type of aircraft you'll fly in the fleet.

Carrier Landings. - One of your greatest challenges will come with your first carrier landing. You'll bank your plane into a sharp left turn, lining up with the carrier deck while you drop just the right amount of speed and altitude. It's "hook down, wheels down" as you approach the carrier flight deck at well over 120 miles per hour. As your wheels touch down, you'll throttle forward to full power; your tailhook grabs the arresting cable, slamming you to a complete stop. There's no feeling in the world to match your carrier landing - until you taxi your plane to the catapult for your first carrier launch.

Helicopter Flight. As a helicopter pilot, you'll fly a variety of demanding missions from the decks of several different types of Navy ships. Your mission could be anti-submarine warfare or tracking potential enemy ships. Or you could be searching for underwater mines or flying vertical replenishment missions, transferring supplies from one moving ship at sea to another underway. And always present, is the instant, emergency requirement for search and rescue including flying over hostile territory performing Combat Search and Rescue (CSAR).

Multi-engine Turboprops/ Jet. As a multi-engine turboprop/jet pilot, you'll fly a variety of missions, from strategic communications to tracking and surveillance of submarines to collecting intelligence. Piloting a multi-engine E-2 Hawkeye early warning aircraft could find you flying radar surveillance warfare missions from a carrier at sea or from a shore air station. Whatever plane you fly and whatever your mission, as a Navy pilot, you are an integral part of a highly skilled, results-oriented professional team.

Locations of initial fleet assignments. Before being assigned to your first operational squadron, you'll join a Fleet Replacement Squadron (FRS) for training in the specific type of aircraft you'll fly in the fleet. As a Pilot, you may be detailed to various locations on the Pacific Fleet, Atlantic Fleet and overseas.
Special pay/bonuses. Naval aviation officers receive aviation career incentive pay in addition to their regular salary. Student aviation officers receive $125 per month flight pay during flight training. The monthly amount of flight pay received depends on time in service and increases by hundreds of dollars within a few years to the current maximum of $840.00 per month. In addition, you may be eligible for a retention bonuses at the end of your initial commitment, currently worth up to $245,000 over a 25-year career.

Basic eligibility requirements. Applicants must be citizens of the United States. Applicants must be at least 19 years old and of such age that they will not have passed their 27th birthday on commissioning. Maximum age limit may be adjusted upward to their 31st birthday on a month for month basis for active duty and prior military service applicants. Applicant must have a Bachelor of Science Degree from an accredited College or University; have a cumulative grade point average of at least 2.0 on a 4.0 scale. Major: No restrictions, but degrees in technical disciplines preferred. Mental: AQR 3/ PFAR 4/ PBI 4. The Commander, Navy Recruiting Command (CNRC) will endeavor to select candidates with the highest mental qualifications, accepting minimum scores only when market conditions or exceptional cases warrant. Physical: Must be physically qualified and aeronautically adapted in accordance with the physical standards established by the Chief, Bureau of Medicine and Surgery (CHBUMED). Applicants must have 20/40 or better uncorrected vision correctable to 20/20, normal color and depth perception. Active duty military members accepted as candidates must obtain an aviation physical exam from a qualified Flight Surgeon to determine aeronautical adaptability.